SEM
 
 The SEM node is based on a numpy or scipy function. The description of that function is as follows:
    Compute the standard error of the mean.
    Calculate the standard error of the mean (or standard error of measurement) of the values in the input array.  Params:    a : array_like  An array containing the values for which the standard error is returned.   axis : int or None  Axis along which to operate.
Default is 0.
If None, compute over the whole array 'a'.   ddof : int  Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate of variance.
Defaults to 1.   nan_policy : {'propagate', 'raise', 'omit'}  Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
'propagate' : returns nan
'raise' : raises an error
'omit' : performs the calculations ignoring nan values     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
 
   Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
import scipy.stats
@flojoy
def SEM(
    default: OrderedPair | Matrix,
    axis: int = 0,
    ddof: int = 1,
    nan_policy: str = "propagate",
) -> OrderedPair | Matrix | Scalar:
    """The SEM node is based on a numpy or scipy function.
    The description of that function is as follows:
        Compute the standard error of the mean.
        Calculate the standard error of the mean (or standard error of measurement) of the values in the input array.
    Parameters
    ----------
    a : array_like
        An array containing the values for which the standard error is returned.
    axis : int or None, optional
        Axis along which to operate.
        Default is 0.
        If None, compute over the whole array 'a'.
    ddof : int, optional
        Delta degrees-of-freedom. How many degrees of freedom to adjust
        for bias in limited samples relative to the population estimate of variance.
        Defaults to 1.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):
        'propagate' : returns nan
        'raise' : raises an error
        'omit' : performs the calculations ignoring nan values
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = scipy.stats.sem(
        a=default.y,
        axis=axis,
        ddof=ddof,
        nan_policy=nan_policy,
    )
    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result